典型的文本检测器遵循两阶段的发现策略:首先检测文本实例的精确边界,然后在定期的文本区域内执行文本识别。尽管这种策略取得了实质性进展,但有两个基本的局限性。 1)文本识别的性能在很大程度上取决于文本检测的精度,从而导致从检测到识别的潜在误差传播。 2)桥接检测和识别的ROI种植会带来背景的噪音,并在合并或从特征地图中插值时导致信息丢失。在这项工作中,我们提出了单个镜头自力更生的场景文本sottter(SRSTS),该场景通过将识别解除识别来规避这些限制。具体而言,我们并行进行文本检测和识别,并通过共享的积极锚点架起它们。因此,即使确切的文本边界要检测到具有挑战性,我们的方法也能够正确识别文本实例。此外,我们的方法可大大降低文本检测的注释成本。在常规基准和任意形状的基准上进行了广泛的实验表明,就准确性和效率而言,我们的SRST与以前的最先进的观察者相比有利。
translated by 谷歌翻译
Recently, models based on deep neural networks have dominated the fields of scene text detection and recognition. In this paper, we investigate the problem of scene text spotting, which aims at simultaneous text detection and recognition in natural images. An end-to-end trainable neural network model for scene text spotting is proposed. The proposed model, named as Mask TextSpotter, is inspired by the newly published work Mask R-CNN. Different from previous methods that also accomplish text spotting with end-to-end trainable deep neural networks, Mask TextSpotter takes advantage of simple and smooth end-to-end learning procedure, in which precise text detection and recognition are acquired via semantic segmentation. Moreover, it is superior to previous methods in handling text instances of irregular shapes, for example, curved text. Experiments on ICDAR2013, ICDAR2015 and Total-Text demonstrate that the proposed method achieves state-of-the-art results in both scene text detection and end-to-end text recognition tasks.
translated by 谷歌翻译
Estimating the 6D pose of objects is one of the major fields in 3D computer vision. Since the promising outcomes from instance-level pose estimation, the research trends are heading towards category-level pose estimation for more practical application scenarios. However, unlike well-established instance-level pose datasets, available category-level datasets lack annotation quality and provided pose quantity. We propose the new category level 6D pose dataset HouseCat6D featuring 1) Multi-modality of Polarimetric RGB+P and Depth, 2) Highly diverse 194 objects of 10 household object categories including 2 photometrically challenging categories, 3) High-quality pose annotation with an error range of only 1.35 mm to 1.74 mm, 4) 41 large scale scenes with extensive viewpoint coverage, 5) Checkerboard-free environment throughout the entire scene. We also provide benchmark results of state-of-the-art category-level pose estimation networks.
translated by 谷歌翻译
Although large language models can be prompted for both zero- and few-shot learning, performance drops significantly when no demonstrations are available. In this paper, we introduce Z-ICL, a new zero-shot method that closes the gap by constructing pseudo-demonstrations for a given test input using a raw text corpus. Concretely, pseudo-demonstrations are constructed by (1) finding the nearest neighbors to the test input from the corpus and pairing them with random task labels, and (2) applying a set of techniques to reduce the amount of direct copying the model does from the resulting demonstrations. Evaluation on nine classification datasets shows that Z-ICL outperforms previous zero-shot methods by a significant margin, and is on par with in-context learning with labeled training data in the few-shot setting. Overall, Z-ICL provides a significantly higher estimate of the zero-shot performance levels of a model, and supports future efforts to develop better pseudo-demonstrations that further improve zero-shot results.
translated by 谷歌翻译
User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architecture or do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product to initialize representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on IMDb, Yelp-2013 and Yelp-2014 benchmarks show that our approach substantially outperforms previous state-of-the-art. Since we employ BERT-base as the encoder, we additionally provide experiments in which our approach performs well with Span-BERT and Longformer. Furthermore, experiments where the reviews of each user/product in the training data are downsampled demonstrate the effectiveness of our approach under a low-resource setting.
translated by 谷歌翻译
Deep Neural Networks have been widely used in many fields. However, studies have shown that DNNs are easily attacked by adversarial examples, which have tiny perturbations and greatly mislead the correct judgment of DNNs. Furthermore, even if malicious attackers cannot obtain all the underlying model parameters, they can use adversarial examples to attack various DNN-based task systems. Researchers have proposed various defense methods to protect DNNs, such as reducing the aggressiveness of adversarial examples by preprocessing or improving the robustness of the model by adding modules. However, some defense methods are only effective for small-scale examples or small perturbations but have limited defense effects for adversarial examples with large perturbations. This paper assigns different defense strategies to adversarial perturbations of different strengths by grading the perturbations on the input examples. Experimental results show that the proposed method effectively improves defense performance. In addition, the proposed method does not modify any task model, which can be used as a preprocessing module, which significantly reduces the deployment cost in practical applications.
translated by 谷歌翻译
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO series and is easily extensible for many object recognition tasks such as instance segmentation and rotated object detection. To obtain a more efficient model architecture, we explore an architecture that has compatible capacities in the backbone and neck, constructed by a basic building block that consists of large-kernel depth-wise convolutions. We further introduce soft labels when calculating matching costs in the dynamic label assignment to improve accuracy. Together with better training techniques, the resulting object detector, named RTMDet, achieves 52.8% AP on COCO with 300+ FPS on an NVIDIA 3090 GPU, outperforming the current mainstream industrial detectors. RTMDet achieves the best parameter-accuracy trade-off with tiny/small/medium/large/extra-large model sizes for various application scenarios, and obtains new state-of-the-art performance on real-time instance segmentation and rotated object detection. We hope the experimental results can provide new insights into designing versatile real-time object detectors for many object recognition tasks. Code and models are released at https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet.
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
Federated learning enables cooperative training among massively distributed clients by sharing their learned local model parameters. However, with increasing model size, deploying federated learning requires a large communication bandwidth, which limits its deployment in wireless networks. To address this bottleneck, we introduce a residual-based federated learning framework (ResFed), where residuals rather than model parameters are transmitted in communication networks for training. In particular, we integrate two pairs of shared predictors for the model prediction in both server-to-client and client-to-server communication. By employing a common prediction rule, both locally and globally updated models are always fully recoverable in clients and the server. We highlight that the residuals only indicate the quasi-update of a model in a single inter-round, and hence contain more dense information and have a lower entropy than the model, comparing to model weights and gradients. Based on this property, we further conduct lossy compression of the residuals by sparsification and quantization and encode them for efficient communication. The experimental evaluation shows that our ResFed needs remarkably less communication costs and achieves better accuracy by leveraging less sensitive residuals, compared to standard federated learning. For instance, to train a 4.08 MB CNN model on CIFAR-10 with 10 clients under non-independent and identically distributed (Non-IID) setting, our approach achieves a compression ratio over 700X in each communication round with minimum impact on the accuracy. To reach an accuracy of 70%, it saves around 99% of the total communication volume from 587.61 Mb to 6.79 Mb in up-streaming and to 4.61 Mb in down-streaming on average for all clients.
translated by 谷歌翻译
Existing natural language understanding (NLU) models often rely on dataset biases rather than intended task-relevant features to achieve high performance on specific datasets. As a result, these models perform poorly on datasets outside the training distribution. Some recent studies address the above issue by reducing the weights of biased samples during the training process. However, these methods still encode biased latent features in representations and neglect the dynamic nature of bias, which hinders model prediction. We propose an NLU debiasing method, named debiasing contrastive learning (DCT), to simultaneously alleviate the above problems based on contrastive learning. We devise a debiasing positive sampling strategy to mitigate biased latent features by selecting the least similar biased positive samples. We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples. We conduct experiments on three NLU benchmark datasets. Experimental results show that DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance. We also verify that DCT can reduce biased latent features from the model's representations.
translated by 谷歌翻译